Kinases SPAK and OSR1 are upregulated by estradiol and activate NKCC1 in the developing hypothalamus.
نویسندگان
چکیده
In immature neurons the amino acid neurotransmitter, GABA provides the dominant mode for neuronal excitation by inducing membrane depolarization due to Cl(-) efflux through GABA(A) receptors (GABA(A)Rs). The driving force for Cl(-) is outward because the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) elevates the Cl(-) concentration in these cells. GABA-induced membrane depolarization and the resulting activation of voltage-gated Ca(2+) channels is fundamental to normal brain development, yet the mechanisms that regulate depolarizing GABA are not well understood. The neurosteroid estradiol potently augments depolarizing GABA action in the immature hypothalamus by enhancing the activity of the NKCC1 cotransporter. Understanding how estradiol controls NKCC1 activity will be essential for a complete understanding of brain development. We now report that estradiol treatment of newborn rat pups significantly increases protein levels of two kinases upstream of the NKCC1 cotransporter, SPAK (STE20/SPS1-related proline alanine rich kinase) and OSR1 (oxidative stress response kinase). The estradiol-induced increase is transcription dependent, and its time course parallels that of estradiol-enhanced phosphorylation of NKCC1. Antisense oligonucleotide-mediated knockdown of SPAK, and to a lesser degree of OSR1, precludes estradiol-mediated enhancement of NKCC1 phosphorylation. Functionally, knockdown of SPAK or OSR1 in embryonic hypothalamic cultures diminishes estradiol-enhanced Ca(2+) influx induced by GABA(A)R activation. Our data suggest that SPAK and OSR1 may be critical factors in the regulation of depolarizing GABA-mediated processes in the developing brain. It will be important to examine these kinases with respect to sex differences and developmental brain anomalies in future studies.
منابع مشابه
The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway.
It has recently been shown that the WNK [with-no-K(Lys)] kinases (WNK1, WNK2, WNK3 and WNK4) have vital roles in the control of salt homeostasis and blood pressure. This Commentary focuses on recent findings that have uncovered the backbone of a novel signal-transduction network that is controlled by WNK kinases. Under hyperosmotic or hypotonic low-Cl- conditions, WNK isoforms are activated, an...
متن کاملMO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases.
Mouse protein-25 (MO25) isoforms bind to the STRAD pseudokinase and stabilise it in a conformation that can activate the LKB1 tumour suppressor kinase. We demonstrate that by binding to several STE20 family kinases, MO25 has roles beyond controlling LKB1. These new MO25 targets are SPAK/OSR1 kinases, regulators of ion homeostasis and blood pressure, and MST3/MST4/YSK1, involved in controlling d...
متن کاملSPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation
Mutations in the WNK [with no lysine (K) kinase] family instigate hypertension and pain perception disorders. Of the four WNK isoforms, much of the focus has been on WNK1, which is activated in response to osmotic stress by phosphorylation of its T-loop residue (Ser382). WNK isoforms phosphorylate and activate the related SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stres...
متن کاملAn emerging role for SPAK in NCC, NKCC, and blood pressure regulation.
The cloning of the related sodium chloride (NCC) and sodium potassium 2 chloride (NKCC) co-transporters in the early 1990s ushered in a new era for understanding the mechanisms of renal salt handling.1 Recent research has focused on the phosphoregulation of NCC and the two NKCC co-transporters: NKCC1, which is widely expressed, and NKCC2, which is renal specific. Two closely related kinases, ST...
متن کاملCharacterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter.
Our recent studies demonstrate that SPAK (Ste20p-related Proline Alanine-rich Kinase), in combination with WNK4 [With No lysine (K) kinase], phosphorylates and stimulates the Na-K-2Cl cotransporter (NKCC1), whereas catalytically inactive SPAK (K104R) fails to activate the cotransporter. The catalytic domain of SPAK contains an activation loop between the well-conserved DFG and APE motifs. We sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2012